

The Thorium Energy Independence Initiative

TABLE OF CONTENTS

1. Executive Summary
2. Current Texas Energy Conditions
 - 2.1 Demand Growth and Population Trends
 - 2.2 Reliability Challenges and Grid Stress
 - 2.3 Fuel Supply and Import Dependence
 - 2.4 Market Pressures Affecting Texas Consumers
3. Overview of Thorium and Molten-Salt Technology
 - 3.1 What Thorium Is
 - 3.2 How Molten-Salt Reactors Function
 - 3.3 Differences From Traditional Nuclear Designs
 - 3.4 Current Status of Advanced Reactor Research
4. How the Initiative Operates
 - 4.1 Core Functions of the Program
 - 4.2 State Responsibilities
 - 4.3 Private-Sector Responsibilities
 - 4.4 Oversight, Reporting, and Transparency
 - 4.5 What the Initiative Does Not Change
5. Technical Design and Safety Characteristics
 - 5.1 Fuel Form and Operating Conditions
 - 5.2 Passive Safety Features
 - 5.3 Thermal and Pressure Behavior
 - 5.4 Heat-Exchange and Power Conversion
 - 5.5 Comparison With Legacy Reactor Risks
6. Land Use, Siting, and Texas Resource Conditions
 - 6.1 Land Requirements and Physical Footprint
 - 6.2 Site Selection Considerations
 - 6.3 Use of State, Local, and Industrial Properties
 - 6.4 Texas Geological Indicators and Resource Zones
 - 6.5 Environmental Considerations for Siting

7. Grid Integration and Economic Considerations

- 7.1 Role Within ERCOT
- 7.2 Generation and Dispatch Characteristics
- 7.3 Transmission and Infrastructure Needs
- 7.4 Long-Term Cost Considerations
- 7.5 Economic Factors Affecting Deployment

8. Environmental and Regulatory Framework

- 8.1 Emissions Profile and Environmental Impact
- 8.2 Water Use and Waste Handling
- 8.3 Monitoring and Compliance Requirements
- 8.4 Federal Regulatory Requirements
- 8.5 State Regulatory Pathways and Possible Updates

9. Workforce and Manufacturing Considerations

- 9.1 Skills Required for Operation and Maintenance
- 9.2 Training and Certification Pathways
- 9.3 Industrial Supply Chain Opportunities
- 9.4 Staffing and Facility Needs

10. Deployment Models and Site Categories

- 10.1 Rural Deployment Options
- 10.2 Industrial Co-Location Models
- 10.3 Urban and Micro-Grid Applications
- 10.4 General Requirements for Each Model

11. Funding Mechanisms and Financial Tools

- 11.1 Private Investment Pathways
- 11.2 Federal Programs and Eligibility
- 11.3 State Financial Tools Under Current Law
- 11.4 Areas That May Require Legislative Action
- 11.5 General Cost Considerations

12. Implementation Timeline and Required Steps

- 12.1 Preliminary Research and Evaluation
- 12.2 Permitting and Safety Review
- 12.3 Demonstration or Pilot Phase
- 12.4 Infrastructure Preparation
- 12.5 Scaling Options

13. Final Message From Stephen

FAQ

1. Executive Summary

Texas is entering a period of rapid population growth, rising energy demand, and increased pressure on the electric grid. Families, businesses, schools, hospitals, and critical infrastructure all depend on reliable power, and the state's current mix of energy sources is facing new challenges. At the same time, new technologies are emerging around the world that may offer additional options for grid stability, long-term energy supply, and economic development. One of these technologies is the molten-salt reactor design that can use thorium as a fuel source.

This initiative outlines a structured approach for Texas to examine, evaluate, and potentially adopt thorium-based molten-salt systems as part of a broader energy strategy. The goal is not to replace existing energy industries, but to add another option that can support reliability and long-term planning. The document explains how the program would operate, what responsibilities fall to the state and to private developers, what safety and regulatory requirements apply, and how Texas can assess whether this technology is appropriate for different regions of the state.

Nothing in this initiative assumes outcomes in advance. It focuses on what is currently known, what can be verified, and what steps would be required before any deployment could occur. Texans deserve clear information about how decisions are made, what the risks and benefits are, and how the state would oversee any new energy system. The following sections provide that information in a format intended to be understandable to households, workers, engineers, researchers, and policymakers across the state.

2. Current Texas Energy Conditions

Texas continues to grow rapidly, and the demand for electricity is increasing with it. The state's electric grid has strengths, but it also faces reliability pressures during high demand, extreme weather, and supply disruptions. Understanding the current conditions is the starting point for any long-term planning.

2.1 Demand Growth and Population Trends

Texas is the fastest-growing state in the country, and electricity use has risen alongside new housing, industry, and technology. This growth increases the strain on generation and transmission systems.

- Texas passed 30 million residents and continues gaining more each year
- Rising industrial activity increases daytime and nighttime demand
- Load growth outpaces the addition of firm, dispatchable generation

2.2 Reliability Challenges and Grid Stress

ERCOT manages a large, independent grid that depends on the right balance of supply at all times. Weather extremes, rapid demand spikes, and outages in single fuel types can put the system under stress.

- Severe cold or heat can push demand near record highs
- Some energy sources depend on weather conditions, reducing predictability
- Shortfalls increase the risk of conservation notices and emergency alerts

2.3 Fuel Supply and Import Dependence

Texas produces significant amounts of energy, but the nuclear fuel used nationally is still largely sourced from other countries. According to federal data, nearly all uranium used by U.S. reactors is imported, which makes the national fuel supply sensitive to international markets and policy changes. This creates long-term uncertainty for any state that relies on uranium-based nuclear power.

- About 99% of the uranium concentrate used in U.S. reactors is imported
- Major suppliers include Canada, Kazakhstan, Australia, and Uzbekistan
- Recent federal restrictions have reduced imports from Russia, but foreign dependence remains
- Supply disruptions or international tensions can influence long-term fuel availability

- Thorium-bearing byproducts already appear in Texas through rare earth processing, giving the state a potential domestic source if refined under future regulatory approval

2.4 Market Pressures Affecting Texas Consumers

Electricity pricing is shaped by generation costs, infrastructure needs, and regional competition. Understanding these pressures helps Texas prepare for long-term affordability.

- Consumers face higher costs when supply is tight
- Transmission upgrades add to long-term system expenses
- Market volatility increases uncertainty for families and businesses

3. Overview of Thorium and Molten-Salt Technology

Thorium and molten-salt reactor technology represent a class of advanced nuclear designs that differ from the traditional reactors used in the United States today. These systems are being researched internationally as potential options for long-term, low-carbon energy. Understanding the basics helps Texans evaluate whether this technology is worth considering.

3.1 What Thorium Is

Thorium is a naturally occurring radioactive element found in soil, rocks, sands, and certain mineral formations. It can be used in specific reactor designs as part of a fuel cycle.

- More abundant than uranium in the earth's crust
- Often found near rare earth element deposits
- Must be converted inside a reactor before becoming usable fuel

3.2 How Molten-Salt Reactors Function

Molten-salt reactors use liquid fuel or liquid coolant held at high temperature, allowing the system to run at low pressure with stable heat-transfer characteristics.

- Fuel circulates as a liquid instead of solid rods
- Operates at low pressure, reducing certain mechanical risks
- High-temperature operation supports efficient energy conversion

3.3 Differences From Traditional Nuclear Designs

Traditional U.S. reactors rely on solid fuel and high-pressure water cooling. Molten-salt systems change both the fuel form and the cooling method.

- Liquid-fuel or liquid-coolant design replaces solid uranium rods
- High-pressure water loops are not used
- Temperature feedback can help regulate reactor power levels

3.4 Current Status of Advanced Reactor Research

Advanced reactors, including molten-salt concepts, are under active study. As of 2025, none are operating commercially in the United States.

- Companies and national labs are conducting research and testing
- Federal programs support advanced reactor development
- Commercial readiness depends on licensing, demonstration projects, and safety validation

3.5 Thorium Fuel Cycles Being Studied

There are multiple ways to design a thorium fuel cycle, and different research groups explore different approaches. Each method has its own technical requirements and challenges.

- Some designs use thorium blended with other materials
- Some generate fuel internally through neutron absorption
- Performance depends on reactor type and fuel processing capabilities

3.6 International Research and Demonstration Efforts

Countries around the world are studying molten-salt and thorium systems to understand whether they can play a role in future energy supply. Progress varies by region.

- Research reactors and test loops exist in several countries
- Some nations focus on molten-salt systems without thorium
- Data from long-term testing helps inform safety and design decisions

4. How the Initiative Operates

This initiative focuses on creating a structured, transparent process for evaluating and potentially developing thorium-based molten-salt reactors in Texas. It does not assume outcomes in advance. Instead, it defines how responsibilities are divided, how oversight works, and what actions the state and private developers must take.

4.1 Core Functions of the Program

The program establishes a framework for studying, testing, and verifying whether molten-salt technology is appropriate for Texas. It outlines the steps needed before any project can move forward.

- Conduct technical and safety assessments
- Identify potential locations suitable for evaluation
- Coordinate with federal agencies for licensing and review
- Provide clear reporting to state leaders and the public

4.2 State Responsibilities

The state's role is limited to oversight, evaluation, and ensuring all regulatory requirements are followed. Texas does not construct or operate reactors itself, but it manages the review process.

- Set safety and reporting standards
- Review applications and ensure compliance with federal law
- Facilitate coordination with ERCOT, environmental agencies, and local authorities
- Maintain public access to factual information and findings

4.3 Private-Sector Responsibilities

Private companies carry out engineering, construction, testing, and operation. They must meet all state and federal requirements before any project begins.

- Prepare technical designs and safety analyses
- Secure funding for development
- Submit applications for permits and licensing
- Operate under full regulatory oversight at every phase

4.4 Oversight, Reporting, and Transparency

This initiative emphasizes public transparency so Texans understand how decisions are made. Oversight ensures data is verified and regulatory standards are met.

- Regular reports to state agencies and legislative committees
- Public access to non-sensitive safety and performance information
- Independent review panels for major milestones
- Clear documentation of compliance with environmental and safety laws

4.5 What the Initiative Does Not Change

To avoid misunderstandings, this section clarifies what remains unchanged under this initiative. It respects current state and federal frameworks.

- Does not alter existing property rights laws
- Does not replace current energy industries or remove existing energy sources
- Does not bypass federal nuclear licensing requirements
- Does not authorize construction without completion of all required reviews

5. Technical Design and Safety Characteristics

Thorium-based molten-salt reactors use design features that differ from traditional nuclear reactors operating in the United States today. These differences shape how the system handles heat, pressure, safety, and long-term operation. This section explains the technical characteristics in plain language so Texans can clearly understand what is being evaluated.

5.1 Fuel Form and Operating Conditions

Molten-salt reactors use a liquid mixture as fuel or coolant, depending on the design. This allows the system to operate at high temperatures while maintaining low internal pressure.

- Fuel or coolant is held in a molten state
- Low-pressure operation reduces certain mechanical stresses
- High-temperature stability supports consistent heat transfer

5.2 Passive Safety Features

These designs use physical principles rather than mechanical systems to maintain safe operating conditions. Several safety responses occur automatically if temperatures rise.

- Fuel expands as it heats, naturally reducing reactivity
- Temperature feedback helps slow the reaction without operator action
- Systems rely less on pumps or high-pressure cooling loops

5.3 Thermal and Pressure Behavior

Molten-salt designs operate differently from water-cooled reactors because they do not rely on high-pressure steam. The thermal behavior is steady and predictable due to the properties of the salt mixture.

- Low operating pressure reduces the likelihood of pressure-related failures
- Salt mixtures retain heat effectively and distribute it evenly
- Pressure changes are less abrupt than in steam-based systems

5.4 Heat-Exchange and Power Conversion

Heat from the primary salt loop is transferred to a secondary loop before reaching power conversion equipment. This separation provides an additional layer of containment.

- Primary and secondary loops do not mix
- Heat exchangers isolate radioactive materials from turbines
- Power is produced through standard thermal electricity-generation methods

5.5 Comparison With Legacy Reactor Risks

Traditional nuclear reactors rely on solid uranium fuel and high-pressure water cooling, which come with different risk profiles. Molten-salt systems change the underlying conditions that lead to certain well-known failure modes.

- No solid fuel rods that can overheat or deform
- No high-pressure water systems that require emergency venting
- Temperature-driven feedback reduces the chance of runaway heat buildup

5.6 Fuel Handling and Chemical Stability

The chemical makeup of the salt mixture plays a role in how the system retains fission products and distributes heat. These properties can support stable reactor performance when properly maintained.

- Salt mixtures can trap certain byproducts within the liquid
- Chemical stability is maintained with controlled operating conditions
- Fuel handling involves monitoring of liquid mixtures rather than solid assemblies

5.7 System Shutdown and Cooling Behavior

In advanced designs, shutdown behavior relies on thermal properties rather than pressurized emergency cooling systems. Some designs use drain tanks to safely contain fuel if temperatures exceed limits.

- Certain systems can drain fuel into storage tanks for passive cooling
- Drain tanks spread heat over a larger surface area
- Shutdown behavior depends on design approval by federal regulators

6. Land Use, Siting, and Texas Resource Conditions

Texas has diverse land types, industrial zones, and geological regions that influence where energy facilities can be located. Any evaluation of molten-salt reactors must consider land size, infrastructure access, environmental conditions, and local input. This section outlines the practical factors involved in siting decisions.

6.1 Land Requirements and Physical Footprint

Molten-salt reactors are designed to require less land than many other large energy projects. Their footprint varies by design, but the overall physical space is smaller than projects that need extensive arrays or large mining areas.

- Facilities generally require a compact site for the reactor and support buildings
- Additional land may be needed for security buffers depending on regulations
- Footprint size is determined during the licensing and design review process

6.2 Site Selection Considerations

Selecting a site requires evaluating safety, accessibility, infrastructure, and environmental compatibility. This process must align with both state and federal requirements.

- Access to stable ground and predictable geological conditions
- Availability of roads, utilities, and transmission connections
- Compatibility with local land-use planning and zoning requirements

6.3 Use of State, Local, and Industrial Properties

Potential sites can include areas already designated for industrial or energy use. Evaluating such locations helps reduce new land disturbance and supports existing economic zones.

- Industrial corridors may provide ready access to infrastructure
- State-owned properties may be considered if they meet safety and environmental standards
- Local authorities can provide guidance on suitable regional locations

6.4 Texas Geological Indicators and Resource Zones

Texas has geological regions where thorium occurs naturally alongside rare earth element minerals. When these minerals are processed, thorium can appear as a byproduct, although it is not currently refined or used as a commercial fuel in the United States. The presence of thorium-bearing material gives Texas the possibility of developing a locally sourced fuel supply if future projects justify it.

- Certain areas of West Texas contain thorium-bearing igneous formations
- Rare earth element processing can produce thorium as a secondary material
- Thorium from these sources is not currently refined or used as fuel
- Any future use would require licensed refining facilities in Texas
- A local fuel source could reduce dependence on foreign uranium markets

6.5 Environmental Considerations for Siting

Environmental review is necessary before any project is approved. This includes evaluating wildlife, water resources, and potential impacts on surrounding ecosystems.

- Projects must comply with state and federal environmental laws
- Areas with sensitive habitats may require additional study
- Water usage and waste handling must meet regulatory standards

6.6 Community Input and Local Compatibility

Community involvement is important for siting decisions. Transparency and early communication help residents understand the project and raise questions.

- Local governments provide input on zoning and land use
- Public meetings and comment periods allow residents to participate
- Compatibility with surrounding neighborhoods must be considered in final approval

7. Grid Integration and Economic Considerations

Texas operates one of the most complex electric grids in the country, and any new energy technology must fit within the practical needs of ERCOT and local communities. This section explains how molten-salt reactor systems could interact with existing grid structures and what economic factors must be evaluated before any project moves forward. The goal is to provide clear information that Texans can understand without overstating benefits or outcomes.

7.1 Role Within ERCOT

ERCOT requires dependable power sources that can operate consistently during high-demand conditions. Advanced reactors would be evaluated for their potential contribution to firm, predictable generation.

- Can provide steady baseload output if approved for operation
- Output levels are set by design and regulatory limits
- Must follow ERCOT protocols for grid interconnection and dispatch

7.2 Generation and Dispatch Characteristics

Molten-salt designs can operate continuously at a stable power level. Their dispatch characteristics depend on licensing decisions and engineering limits defined during design review.

- Designed for steady, long-duration operation
- Ramp rates and flexibility vary by design and must be validated
- Performance must align with ERCOT reliability requirements

7.3 Transmission and Infrastructure Needs

Any new generating unit requires reliable transmission access. The scale and cost of required upgrades depend on the chosen location and grid conditions in that area.

- Sites near existing substations may require fewer upgrades
- Rural locations may need additional lines or capacity increases
- Transmission planning must follow ERCOT studies and approval processes

7.4 Long-Term Cost Considerations

Costs depend on design complexity, supply chains, regulatory reviews, and construction timelines. Evaluating these factors helps determine whether advanced reactors are competitive for Texas.

- Early-stage designs often have higher upfront costs
- Long-term operational costs depend on fuel cycle and maintenance needs
- Actual cost competitiveness requires real project data from demonstration facilities

7.5 Economic Factors Affecting Deployment

Market conditions influence whether private developers pursue advanced reactors in Texas. These factors include financing availability, federal incentives, and Texas's overall energy mix.

- Private investment is required for project development
- Federal programs may support certain advanced reactor designs
- Texas's competitive electric market affects long-term revenue forecasts

7.6 Local and Regional Economic Impact

If a project proceeds, regional impacts depend on construction activity, workforce involvement, and supporting industries. These impacts vary widely depending on project scale and location.

- Construction creates short-term job activity in local areas
- Long-term staffing needs depend on facility size and design
- Industrial supply chains may expand if local manufacturers participate

8. Environmental and Regulatory Framework

Any evaluation of molten-salt reactor technology in Texas must comply with existing environmental laws and the full federal nuclear regulatory structure. This section explains how environmental protection, monitoring, and regulatory authority apply to advanced reactor designs. The purpose is to give Texans a clear understanding of what rules guide this process today.

8.1 Emissions Profile and Environmental Impact

Molten-salt reactors do not produce air emissions during normal operation, but they still require environmental review to assess their full impact. These assessments consider surrounding ecosystems, land use, and long-term site conditions.

- No combustion-based emissions such as carbon dioxide or nitrogen oxides
- Environmental reviews evaluate wildlife, soil conditions, and surface impacts
- Final assessments depend on the specific design and location

8.2 Water Use and Waste Handling

Advanced reactors require water for certain support systems, though the amount varies by design. Waste produced by any nuclear system must be managed under strict regulations.

- Water needs depend on cooling method and reactor configuration
- Radioactive materials must be stored, processed, or disposed under federal rules
- Long-term waste handling requires licensed facilities and monitored storage

8.3 Monitoring and Compliance Requirements

Continuous monitoring is required for radiation, environmental conditions, and system performance. Regulatory agencies oversee compliance at every stage of the project.

- Facilities must maintain radiation monitoring equipment
- Environmental sampling helps track site conditions over time
- Compliance reports are submitted to state and federal regulators

8.4 Federal Regulatory Requirements

In the United States, all commercial nuclear reactors—advanced or traditional—must be licensed by the Nuclear Regulatory Commission (NRC). No reactor can operate without meeting federal safety standards.

- NRC oversees design approval, construction permits, and operating licenses
- Licensing includes detailed safety, environmental, and engineering reviews
- Federal law governs fuel handling, waste management, and security protocols

8.5 State Regulatory Pathways and Possible Updates

Texas agencies oversee land use, environmental permitting, and coordination with federal authorities. Some areas may require updates depending on how advanced reactor designs evolve.

- State environmental agencies review water use and site impacts
- Local authorities handle zoning and land-use considerations
- Policy updates may be needed to address new technologies not covered in older statutes

8.6 Emergency Preparedness and Response Planning

All nuclear facilities must maintain emergency preparedness plans that meet federal and state requirements. These plans focus on clear communication and protective actions.

- Emergency procedures must align with NRC and state guidelines
- Local first responders participate in planning and training
- Plans must be periodically tested and reviewed for effectiveness

9. Workforce and Manufacturing Considerations

Evaluating advanced reactor technology in Texas requires understanding the workforce skills, training capacity, and industrial capabilities available today. Texas has strong energy, manufacturing, and technical sectors, but specific training and certification standards apply to nuclear facilities. This section outlines the practical workforce and industry factors involved.

9.1 Skills Required for Operation and Maintenance

Operating a nuclear facility requires specialized technical skills, including reactor operations, instrumentation, materials handling, and radiation safety. These skills are regulated and must meet federal standards.

- Reactor operators require formal training and licensing
- Maintenance staff must understand mechanical, electrical, and control systems
- Radiation safety technicians monitor environmental and facility conditions

9.2 Training and Certification Pathways

Workers must complete approved training programs before being certified for nuclear operations. Existing institutions can support some skills, while others may require expanded programs.

- Nuclear operators are certified through federal and industry standards
- Technical colleges can train electricians, welders, and instrumentation specialists
- Additional programs may be required if advanced reactors expand in Texas

9.3 Industrial Supply Chain Opportunities

Texas has a strong manufacturing base that supports energy and industrial equipment. Some existing industries may be able to supply parts or materials for advanced reactor projects if they meet regulatory requirements.

- Fabrication plants may support component manufacturing
- Quality-controlled materials would be required for safety-critical parts
- Local suppliers could benefit from participating in approved supply chains

9.4 Staffing and Facility Needs

Facility staffing levels depend on the size and design of the reactor. Staffing includes operations, maintenance, security, environmental monitoring, and administrative support.

- Smaller facilities may require fewer staff members
- Staffing plans must meet federal safety and security guidelines
- Support staff handle documentation, compliance, and logistics

9.5 Research, Testing, and Technical Support

Advanced reactors rely on ongoing research and testing to validate performance and safety. Texas universities and research institutions may contribute to this work.

- University labs can support materials studies and modeling
- Research partnerships help evaluate fuel cycles and thermal systems
- Technical reviews provide additional layers of verification

9.6 Workforce Development for Long-Term Needs

If advanced reactor projects progress, long-term workforce needs would increase gradually. Planning ahead supports reliable staffing without assuming rapid expansion.

- Workforce requirements grow as facilities move from testing to operation
- Apprenticeships and training pathways help prepare future workers
- Long-term planning aligns with actual project timelines and regulatory decisions

10. Deployment Models and Site Categories

Texas contains a wide range of geographic regions, industrial areas, and population centers, and each requires a different approach when evaluating potential reactor sites. Deployment options vary by scale, infrastructure availability, and local conditions. This section explains how different site categories would be assessed without assuming that any specific model will be chosen.

10.1 Rural Deployment Options

Rural sites can offer more open land and fewer nearby structures, making them practical for facilities that require buffer space. These areas often provide flexibility, but they may need new infrastructure.

- Additional transmission lines may be required
- Local roads and utilities may need upgrades
- Site approval depends on environmental and land-use compatibility

10.2 Industrial Co-Location Models

Industrial zones already host energy, chemical, or manufacturing facilities, making them suitable for evaluating advanced reactors that supply steady power. These locations can reduce new land disturbance.

- Access to existing transmission and utility infrastructure
- Industrial zoning may streamline some aspects of review
- Safety and compatibility assessments remain necessary

10.3 Urban and Micro-Grid Applications

Urban deployment is more complex because of population density, zoning laws, and infrastructure limitations. Any consideration of such placements would require rigorous review under existing regulations.

- Limited land availability restricts potential sites
- Greater emphasis on public engagement and local planning
- Micro-grid applications depend on validated safety and engineering data

10.4 Regional Energy Support Hubs

Some regions may evaluate facilities designed to support large industrial clusters or ports. These hubs rely heavily on stable power and already maintain significant energy infrastructure.

- Coastal and industrial regions often have major transmission capacity
- Combined heat and power systems may be considered depending on design
- Regional planning ensures compatibility with existing industries

10.5 Site Requirements for Each Model

Regardless of location, all deployment types must meet safety, engineering, and regulatory criteria. These requirements are determined by federal and state agencies.

- Land stability, environmental conditions, and access must be verified
- Security and emergency planning must follow federal guidelines
- Site approval depends on passing all environmental and technical reviews

10.6 Community and Local Government Participation

Every deployment model requires input from residents and local officials. Public understanding and regional compatibility are central to the review process.

- Zoning decisions involve city or county authorities
- Public comment periods provide opportunities for questions and feedback
- Local conditions influence final siting decisions

11. Funding Mechanisms and Financial Tools

Evaluating and developing advanced reactor technology requires a clear understanding of how projects may be financed under existing laws. Funding must reflect realistic costs, available programs, and private-sector participation. This section outlines the financial tools that may be used while avoiding assumptions about approvals or guaranteed outcomes.

11.1 Private Investment Pathways

Advanced reactors rely heavily on private capital for early design, engineering, and construction work. Companies must determine whether the technology is financially viable based on market conditions.

- Private firms are responsible for raising capital
- Investors evaluate project feasibility and long-term revenue potential
- Market competition influences which designs move forward

11.2 Federal Programs and Eligibility

Federal agencies provide grants, tax credits, and research support for certain advanced reactor technologies. Eligibility depends on meeting federal criteria and program requirements.

- The U.S. Department of Energy supports advanced reactor research
- Federal incentives may apply if a project meets program standards
- Participation requires compliance with all federal review processes

11.3 State Financial Tools Under Current Law

Texas law provides certain tools that may apply to energy or infrastructure projects, depending on their classification. These tools do not guarantee funding but may support qualifying projects.

- Local economic development programs may offer support for eligible facilities
- Tax structures vary by county and district zoning
- Any financial tool must comply with state statutes already in place

11.4 Areas That May Require Legislative Action

Some aspects of advanced reactor financing may not be covered under existing state policies. In those cases, legislative updates could be considered only if needed.

- New programs may be required for technologies not addressed in current law
- Legislative review ensures consistency with public interest and safety standards
- Any changes must align with regulatory requirements and constitutional limits

11.5 General Cost Considerations

Advanced reactor projects involve engineering, licensing, construction, and long-term operation costs. Actual cost levels depend on project scale and design maturity.

- Early-stage designs often carry higher upfront costs
- Operating costs vary by fuel cycle, maintenance needs, and staffing
- Long-term economic performance depends on verified project data

11.6 Public Reporting and Transparency

Financial information must be documented clearly so the public, regulators, and stakeholders can understand project status. Transparency helps maintain accountability throughout the process.

- Cost reports are submitted during major project milestones
- Public summaries provide non-sensitive financial information
- Transparency requirements apply to both private developers and state agencies

12. Implementation Timeline and Required Steps

Any advanced reactor project must progress through a series of structured steps before it can be considered for construction or operation. These steps are determined by federal law, state requirements, engineering conditions, and public review. This section provides a factual outline of what the process looks like without assuming how quickly any given project would proceed.

12.1 Preliminary Research and Evaluation

Before any formal application, developers and state agencies review available data to understand whether a proposed site or design meets basic criteria. This early work helps identify potential challenges.

- Geological, environmental, and grid studies guide initial decisions
- Developers assess technical readiness of the design
- State agencies review major factors such as land use and safety considerations

12.2 Permitting and Safety Review

Federal nuclear facilities require detailed review through the Nuclear Regulatory Commission (NRC). The permitting process focuses on safety analysis, environmental impact, and design verification.

- NRC reviews design certification and construction permit applications
- Environmental impact statements are required for major projects
- State agencies coordinate with federal regulators and verify regional compliance

12.3 Demonstration or Pilot Phase

Before broad deployment, an advanced reactor design typically undergoes a demonstration phase to validate performance and safety under real operating conditions. Data from pilot projects informs future decisions.

- Demonstration units provide operational and safety data
- Performance results are reviewed by regulators and independent experts
- Pilot outcomes influence whether further deployment is considered

12.4 Infrastructure Preparation

If a project continues beyond demonstration, infrastructure planning begins. This includes evaluating transmission access, water requirements, and local support systems.

- Transmission studies determine connection feasibility
- Water and waste-handling plans must meet state and federal standards
- Local authorities review roads, utilities, and emergency planning requirements

12.5 Scaling Options

Scaling decisions depend on validated data from earlier phases and regulatory approval. Expansion can only occur once all requirements have been met and reviewed.

- Additional units require separate evaluations and approvals
- Workforce and supply chain needs increase as deployment grows
- Scaling decisions consider economic, environmental, and grid impacts

12.6 Public Engagement and Final Approvals

Public input is required at multiple stages. Final approvals rely on regulatory compliance, technical evidence, and documented stakeholder participation.

- Public comment periods occur during environmental reviews
- Local governments provide zoning and land-use guidance
- Final authorization depends on meeting all federal and state criteria

13. Final Message From Stephen

Texas depends on reliable power, and every family, business, and community feels the impact when the grid is strained. As our population grows and our energy needs rise, we must evaluate every option that could support long-term reliability. This initiative does not assume that advanced reactors are the answer, and it does not assume they will be deployed. What it does is give Texans a clear, structured way to examine the technology, understand the facts, and decide for ourselves whether it has a place in our energy future.

One of the advantages we should not overlook is the natural position Texas already holds. Our state produces thorium-bearing material as a byproduct of rare earth processing, even though that material is not currently refined or used as fuel in the United States. If future testing and regulatory approval show that refinement is practical and safe, Texas could evaluate whether a locally sourced fuel cycle is possible. That would allow us to mine, refine, and use our own material instead of depending on foreign fuel markets. This is not a promise of what will happen, but an acknowledgment of what is available to study.

Texas succeeds when we approach major decisions with clarity, transparency, and a commitment to the truth. This initiative follows that approach. It lays out the steps, the oversight, and the standards that must be met before anything moves forward. Where the data supports progress, we will recognize it. Where the data raises questions, we will address them openly. The goal is simple: give Texans the information and the structure we need to make responsible choices about our future.

FAQ

1. Does this initiative approve or authorize the construction of a nuclear reactor in Texas?

No. This initiative only creates a process for evaluating thorium-based molten-salt reactors. Any construction would require federal approval, state review, public input, and successful demonstration data.

2. Is thorium already being mined in Texas?

Thorium is not mined as a primary product, but thorium-bearing materials do appear as a byproduct of rare earth processing in Texas. This material is not currently refined or used as fuel.

3. Why consider thorium and molten-salt reactors now?

Texas faces growing demand and grid reliability challenges. This initiative allows the state to study advanced technologies that other countries are researching without committing to deployment.

4. Does this technology replace Texas oil, gas, or renewable energy industries?

No. This initiative does not remove or replace any existing energy sector. It adds another potential option for long-term planning.

5. What makes molten-salt reactors different from traditional nuclear plants?

They operate at low pressure, use liquid fuel or coolant, and rely on passive safety features. Traditional reactors use solid uranium fuel and high-pressure water systems.

6. What is the role of the state under this initiative?

The state oversees safety, transparency, and compliance. Private developers handle engineering, financing, construction, and operations.

7. Could Texas develop a local thorium fuel cycle?

It is possible but not guaranteed. Texas has thorium-bearing byproduct materials, but refining and fuel preparation would require new facilities and federal approval.

8. Are molten-salt reactors proven or commercially deployed?

Not yet. As of 2025, they are still in research and demonstration phases worldwide.

9. How long would it take before any advanced reactor could be built?

Federal licensing, environmental review, and demonstration phases can take many years. This initiative does not accelerate or bypass those requirements.

10. Does this technology create nuclear waste?

Yes. All nuclear systems produce waste that must be managed under strict federal regulations. Molten-salt designs may handle waste differently, but disposal still follows federal standards.

11. Will communities have a say in siting decisions?

Yes. Public input, local zoning, and community review are required before any site can be considered.

12. What environmental protections apply?

Projects must meet all state and federal environmental laws, including wildlife, water, and land-use requirements.

13. Is this technology safe?

Molten-salt designs use inherent safety features, but any project must undergo full federal safety evaluation. No reactor can operate without meeting Nuclear Regulatory Commission standards.

14. Does this increase Texas's dependence on the federal government?

No. The state maintains all current authority. The federal government regulates nuclear safety, which is the same for all reactor projects nationwide.

15. What happens if studies show the technology is not suitable for Texas?

Then Texas does not move forward. This initiative is about evaluation, not commitment.